Home / Science / A jet from the MRC 0600-399 bent by a magnetic field in the Abell 3376 cluster.

A jet from the MRC 0600-399 bent by a magnetic field in the Abell 3376 cluster.



  • 1.

    Markevitch, M. et al. Chandra observations of Abell 2142: Survival of dense sub-cluster cores in mergers and acquisitions. Astrophys. J.. 541, 542–549 (2543).

    Google Scholar Ad

  • 2.

    Vikhlinin, A., Markevitch, M. & Murray, A3667 cold-moving face SS in the aerospace medium. Astrophys. J.. 551

    , 160–171 (2001).

    Google Scholar Ad

  • 3.

    Urdampilleta, I. et al. X-ray study of Abell 3376 double radio objects with Suzaku. Astron. Astrophys. 618, A74 (2018).

    Google Scholar

  • 4.

    Durret, F. et al. Collected Galactic Clusters Abell 3376: Optical Perspective. Astron. Astrophys. 560, A78 (2013).

    Google Scholar

  • 5.

    Machado, REG & Lima Neto, GB Abell 3376 Emulation of the Combined Galactic Clusters. Mon No. R. Soc. 430, 3249–3260 (2013).

    Google Scholar Ad

  • 6.

    Bagchi, J., Durret, F., Neto, GBL & Paul, S. A giant ring-like radio structure surrounding the Abell 3376 cluster. science 314, 791–794 (2006).

    ADS CAS PubMed PubMed Central Google Scholar

  • 7.

    Kale, R. et al. Spectral and polarization studies of dual relics in the Abell 3376 using the Giant Metrewave radio telescope and very large arrays. Mon No. R. Soc. 426, 1204–1211 (2012).

    Google Scholar Ad

  • 8.

    Team Jonas, J. & MeerKAT, the meercat radio telescope in MeerKAT Science: On the Pathway to the SKA, 1 (PoS, 2016).

  • 9.

    Mauch, T. et al. Image 1.28 GHz MeerKAT DEEP2. Astrophys. J.. 888, 61 (2020).

    Google Scholar CAS ADS

  • 10.

    Owen, FN & Rudnick, L. A wide-tailed radio source in the Abell galaxy cluster. Astrophys. Gelet. 205, 1–4 (1976).

    Google Scholar Ad

  • 11.

    Jones, TW & Owen, FN Hot gas in an elliptical galaxy and the formation of a head-tailed radio source. Astrophys. J.. 234, 818–824 (2522).

    Google Scholar CAS ADS

  • 12.

    Markevitch, M. & Vikhlinin, A. Shock and cooling in galactic clusters. Body.. 443, 1–53 (2007).

    Google Scholar Ad

  • 13.

    Gunn, J.E., Gott, I. & Richard, J. As for matter, it becomes galaxy clusters and some impacts on their evolution. Astrophys. J.. 176, 1 (1972).

    Google Scholar Ad

  • 14.

    Donnert, J., Vazza, F., Brüggen, M. & ZuHone, J. Magnetic field expansion in galactic clusters and simulations. Space Science. Income. 214, 122 (2018).

    Google Scholar Ad

  • 15.

    ZuHone, JA & Roediger, E. Cold fronts: Probe of Astrophysical Plasmas in Galactic Clusters. J. Plasma Phys. 82, 535820301 (2559).

    Google Scholar

  • 16.

    Werner, N. et al. Deep Chandra observations and numerical studies of the closest cluster in the sky. Mon No. R. Soc. 455, 846–858 (2016).

    Google Scholar Ad

  • 17.

    Walker, S.A., ZuHone, J., Fabian, A., and Sanders, J. Natt. Astron. 2, 292–296 (2018).

    Google Scholar Ad

  • 18.

    Nolting, C., Jones, TW, O’Neill, BJ & Mendygral, PJ. Interaction between radio galaxies and cluster vibration I. Jet axis conforms to shock standards. Astrophys. J.. 876, 154 (2019).

    Google Scholar Ad

  • 19.

    Lal, DV NGC 4869 in the Coma group: twisted, wrapped, overlapped and bent. Astron. J.. 160, 161 (2020).

    Google Scholar CAS ADS

  • 20.

    Takizawa, M. Hydrodynamic simulation of moving substructures in galaxy clusters: cold fronts and turbulence generation. Astrophys. J.. 629, 791–796 (2005).

    Google Scholar CAS ADS

  • 21.

    Asai, N., Fukuda, N., and Matsumoto, R. Astrophys. J.. 663, 816–823 (2007).

    Google Scholar CAS ADS

  • 22.

    ZuHone, JA, Markevitch, M. & Lee, D. Decrease of magnetized cold gas in the core of the galaxy cluster. Astrophys. J.. 743, 16 (2011).

    Google Scholar Ad

  • 23.

    Chen, H., Jones, C., Andrade-Santos, F., ZuHone, JA & Li, Z. Gas sloshing in Abell 2204: limiting the properties of intermediates within a magnetic cluster. Astrophys. J.. 838, 38 (2560).

    Google Scholar Ad

  • 24.

    Matsumoto, Y. et al. Magnetohydrodynamic CANS + simulation code: assessment and implementation. Publ. Astron. Soc. Jpn 71, 83 (2019).

    Google Scholar Ad

  • 25.

    Hallman, E.J. and Markevitch, M. Astrophys. J.. 610, L81 – L84 (2004).

    Google Scholar CAS ADS

  • 26.

    Sheardown, A. et al. New class X-ray tail of early galaxies and subgroups in galactic clusters: catapult-tails versus stressed tails. Astrophys. J.. 874, 112 (2019).

    Google Scholar CAS ADS

  • 27.

    Hickish, J. et al. A decade of development of radio-astronomy instruments using CASPER open source technology. Astron. Instrument. 5, 1641001–1641012 (2559).

    Google Scholar

  • 28.

    Offringa, AR, van de Gronde, JJ & Roerdink, JBTM, a morphological algorithm for improving radio frequency interference detection. Astron. Astrophys. 539, A95 (2012).

    Google Scholar

  • 29.

    McMullin, JP, Waters, B., Schiebel, D., Young, W. & Golap, K. CASA Architecture and Applications. ASP Conf. Is. 376, 127 (2007).

    Google Scholar Ad

  • 30.

    Offringa, AR et al. WSCLEAN: Fast General Use of Wide-Field Imager for Radio Astronomy. Mon No. R. Soc. 444, 606–619 (2014).

    Google Scholar Ad

  • 31.

    Kenyon, JS, Smirnov, OM, Grobler, TL & Perkins, SJ CUBICAL – a fast interferometric radio frequency calibration kit that takes advantage of sophisticated optimization. Mon No. R. Soc. 478, 2399–2415 (2018).

    Google Scholar Ad

  • 32.

    Eckert, D. et al. Gas distribution in the periphery of the galaxy cluster. Astron. Astrophys. 541, A57 (2012).

    Google Scholar

  • 33.

    Wang, QHS, Markevitch, M. & Giacintucci, S. A520 combined galaxy cluster – a cold core that breaks into dark sub-clusters and X-ray channels. Astrophys. J.. 833, 99 (2559).

    Google Scholar Ad

  • 34.

    Koide, S., Sakai, J.-I., Nishikawa, K.-I. & Mutel, RL. Numerical simulation of bent jets: displacement to oblique magnetic fields. Astrophys. J.. 464, 724 (1996).

    Google Scholar Ad

  • 35.

    Rybicki, GB and Lightman, AP Radiation process in astrophysics (Wiley-VCH, 1985).

  • 36.

    Bicknell, GV, Mukherjee, D., Wagner, AY, Sutherland, RS & Nesvadba, NPH Relativistic jet feedback – II correlation with the highest spectrum of gigahertz and compact high-frequency radio galaxies. Mon No. R. Soc. 475, 3493–3501 (2018).

    Google Scholar CAS ADS

  • 37.

    Komarov, S., Reynolds, C., and Churazov, E. Mon No. R. Soc. 497, 1434–1442 (2020).

    Google Scholar Ad

  • 38.

    Cavagnolo, KW, Donahue, M., Voit, GM & Sun, M. Astrophys. J. Suppl. Ser. 182, 12–32 (2009).

    Google Scholar CAS ADS

  • 39.

    Tajima Tea and Shibata Ke Plasma Astrophysics (Basic book, 1997).


  • Source link